
            

PAPER • OPEN ACCESS

Guaranteed global optimization of thin-film optical systems
To cite this article: Paul Azunre et al 2019 New J. Phys. 21 073050

 

View the article online for updates and enhancements.

This content was downloaded from IP address 24.4.62.106 on 14/09/2020 at 01:12

https://doi.org/10.1088/1367-2630/ab2e19


New J. Phys. 21 (2019) 073050 https://doi.org/10.1088/1367-2630/ab2e19

PAPER

Guaranteed global optimization of thin-film optical systems

PaulAzunre1,2, Joel Jean1, Carmel Rotschild3 , Vladimir Bulovic1, StevenG Johnson4 andMarcABaldo1

1 Department of Electrical Engineering andComputer Science,Massachusetts Institute of Technology, Cambridge,MA 02139,United
States of America

2 Algorine Inc., Austin, TX 78729,United States of America
3 Department ofMechanical Engineering, Technion Institute of Technology, TechnionCity,Haifa 32000, Israel
4 Department ofMathematics,Massachusetts Institute of Technology, Cambridge,MA02139,United States of America

E-mail: azunre@algorine.com

Keywords: deterministic global optimization, thin film optical filters, solar energy, optical systemdesign

Abstract
Aparallel deterministic global optimization algorithm for thin-filmmultilayer optical coatings is
developed. This algorithm enables locating a global solution to an optimization problem in this class
towithin a user-specified tolerance.More specifically, the algorithm is a parallel branch-and-bound
methodwith applicable bounds on themerit function computed using Taylormodels. This study is
thefirst one, to the best of our knowledge, to attempt guaranteed global optimization of this important
class of problems, thereby providing an overview and an assessment of the current state of such
techniques in this domain. As a proof of concept on a small scale, themethod is illustrated numerically
and experimentally in the context of antireflection coatings for silicon solar cells—we design and
fabricate a three-layer dielectric stack on silicon that exhibits an average reflectance of
(2.53±0.10)%,weighted over a broad range of incident angles and the solar spectrum. The
practicality of our approach is assessed by comparing its computational cost relative to traditional
stochastic global optimization techniques which provide no guarantees on their solutions.While our
method is observed to be significantlymore computationally expensive, we demonstrate via our proof
of concept that it is already feasible to optimize sufficiently simple practical problems at a reasonable
cost, given the current accessibility of cloud computing resources. Ongoing advances in distributed
computing are likely to bringmore design problemswithin the reach of deterministic global
optimizationmethods, yielding rigorous guaranteed solutions in the presence of practical
manufacturing constraints.

1. Introduction

Multilayer filters are an integral component ofmodern optical systems. They function to determine the spectral
composition and intensity of light reflected and/or transmitted by an optical system. Perhaps themost
important implementation ofmultilayer filters uses thin films, generally considered to vary between a fraction of
a nanometer (nm) and a couplemicrometers in thickness [1, 2].

The variety ofmaterials that are available for thin-filmdeposition and the nm-level control over their
thickness lead to a corresponding practical design challenge: what is the bestmultilayer design for a given
reflection/transmission spectrumwith a givenmenu ofmaterials? Unfortunately, as illustrated schematically in
figure 1, the problem is ‘nonconvex’ on the search space,meaning thatmultiple suboptimal localminimamay
exist, potentially distracting the designer from the global optimum solution.

Althoughmany design techniques have been used to attack this problem [1, 3–8], most prominently the
needle optimization technique, all previous approaches have a common feature: they provide no theoretical
guarantees that the global optimum [9] design has been located. Indeed, even if the designer does correctly
identify the global solution, present approaches cannot guarantee that the solution is optimal and that a superior
solution does not exist. Even the ostensibly ‘global’ optimization algorithms (such as genetic algorithms [3] or
other approaches [10]) that have been applied to the thin-filmdesign problem [1] are stochastic (randomized)
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algorithms that converge only asymptotically to the global optimum, but provide no information aboutwhether
the global optimumhas actually been reached in thefinite number of iterations that is used in practice.

More specifically, approaches to solving nonconvex optics optimization problems are broadly considered to
fall into two categories. Local optimization techniques that iteratively improve on an initial guess are known as
‘refinement’methods [1, 11]. Thesemethods rely on intuition since the initial guess can strongly affect the
quality of thefinal solution. Global optimizationmethods attempt to overcome nonconvexity and can be
categorized as stochastic or deterministic [3]. Stochastic global optimization algorithms escape localminima in
some probabilisticmanner. Genetic algorithms [12] and other randomized global-search algorithms [13]have
been used extensively to design thin-film opticalfilters. However, convergence of this class of algorithms to the
global solution is only guaranteed asymptotically. In practice, execution is terminatedwhen a specified number
of iterations or function evaluations has been reached orwhen the user decides that the current solution is ‘good
enough’. Thus, although stochastic algorithms can often avoid suboptimal localminima, one can never know
for surewhether a global solution has been found in practice.

Deterministic global optimization approaches, on the other hand,must confront the daunting
computational demands of systematically scanning an entire design space. In return, they can provide a
guarantee that a globally optimal solution to an optimization problemhas been found towithin a user-specified
tolerance. To determine the practicality of deterministic global optimization, we introduce an algorithm that
combines branch-and-bound techniques [9]with calculations of analytic bounds using Taylor arithmetic
[14, 15].We apply this deterministic global algorithm to stochastically-derived solutions for antireflection
coatings consisting of two or three layers on a substrate. The deterministic technique is capable of proving that
the stochastically-derived solutions are in fact global optima towithin a specified tolerance for the specified
design constraints in the problemswe consider.

As a representative and practical thin-film optics problem,we optimize a broadband omnidirectional
antireflection (AR) coating for crystalline silicon (c-Si) solar cells. Existing solutions for reducing reflection
losses include surface texturing [16–20], usedwidely in commercial c-Si cells, in conjunctionwith a single-layer
SiNx:HAR coatings, and gradient-index coatings [21, 22], which approximate a smooth refractive index
gradient from that of air to that of silicon. Surface texturing approaches employing nanocone gratings/arrays
[23–25], and biomimetic nanostructures [26], have also been explored. Arguably, however, all of these
approaches have some serious limitations. Surface texturing can be simple and low-cost, but is generally
ineffective formulticrystalline silicon (mc-Si) cells, which currently command over 60%of the c-Si PVmarket
[27], although it has been observed that encapsulationwith ethylene vinyl acetate (EVA) reduces the difference
in antireflection performance between texturedmc-Si and single-crystalline silicon (sc-Si). Gradient-index
coatings workwell for both sc-Si andmc-Si cells. However, to obtain refractive indices near unity, these coatings
often employ porous SiO2films that are subject to fouling [22]. Although a continuously-graded indexwith an
infinite number ofmaterials eliminates reflections for omnidirectional incidence over a broadwavelength range
[21], it is unclear whether examples of discretized gradient-index approaches achieve the optimal result for the
particularmaterial systems and layer structures they consider. In this work, we apply deterministic global
optimization tofind a guaranteed globally optimal antireflection coating for silicon substrates, based on
common and durablematerials deposited using industrially proven and scalable coating processes.

As onewould expect, wefind that the computational cost of proving that a design is a global solution
increases dramatically as the design space increases, with the consequence that all but the simplest practical
design problems are presently numerically infeasible to attempt using this technique. There are several reasons,
however, to suspect that deterministic global optimization techniqueswill not remain limited to the simplest
problems. First, we show that is possible to exploit prior knowledge of problem structure to constrain the design

Figure 1.Nonconvexity and themechanics of branch-and-bound global optimization. A two-parameter example of the inherent
challenge ofmany optical design problems: nonconvexity. Local optimization algorithms often get stuck in localminima of themerit
function surface.
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space in particular scenarios. For example,muchmore complex antireflection coatings can be deterministically
optimized by restricting the design of antireflection coatings to gradient index structures. Second, if present-day
trends hold, and computational power continues to increase dramatically, we can expect deterministic global
optimization approaches to reachmore deeply into the design space of thin film coatings that are economically
viable in production. Thus, while conventional stochastic or asymptotic approaches are likely to continue to
dominate the initial stages ofmultilayer filter design, itmay be practical in some cases to subsequently perform
deterministic global optimization to verify these solutions, or identify superior designs within a given parameter
space.

To summarize, this study is thefirst one to attempt guaranteed global optimization of this important class of
problems, thereby providing an overview and an assessment of the current state of such techniques in this
domain. It highlights some of themost important numerical and theoretical issues that need to be addressed in
order tomake deterministic techniques evenmore practical.We also demonstrate that it is already numerically
feasible and practical to solve some simple yet important practical problems using deterministic global
optimization techniques. For these kinds of problems, our algorithm can be a useful tool that can be used to
verify solutions produced by computationally cheaper algorithms.

The rest of this paper is organized as follows. In section 2 below, we define the design problem that we tackle
using deterministic global optimization. The algorithm and the bounding procedure are described in section 3.
We then turn to the AR coating application. Section 4 explains how imposing the special gradient-index
structure on the solution can be leveraged tomake the algorithmmore computationally efficient for certain AR
coating design problems. Numerical results for the AR coating problem,without imposing any such special
structure, are presented in section 5. Section 6 presents the experimental AR results and compares them to the
numerical results. The numerical and experimental results are discussed and the paper is concluded in section 7.

2. Themultilayer optical design problem

A schematic representation of amultilayer filter is shown infigure 2. In thefigure, represents the front-
interface reflectance. This is the ratio of reflected to incident intensity at any given incident wavelengthλ,
incident angle θ and polarization s or p, while dk and ηk respectively denote the physical thickness and the
complex refractive index of the kth layer. The complex refractive index of the kth layer is explicitly written as

h k= + ( )n j , 1k k k

with nk andκk respectively denoting the real and imaginary parts of the refractive index of the kth layer. In
general ηk is wavelength dependent, but all problems (with the important exception of experimental re-
optimization) considered in this work are nondispersive so that ηk is not a function of wavelength.Moreover, all
examples considered feature approximately nonabsorbingmaterials, i.e.κk≈0 ∀ k. Finally, thematerials are
assumed to be isotropic. The algorithm generalizes to absorptivematerials directly, and it is straightforward to
extend the calculation to dispersive and anisotropic refractive indices by appropriate parameterizationwith
respect towavelength, and polarization.

The task of optimizing a thin-film opticalfilter generally involves finding a system configuration thatmost
closely approximates the desired response/reflectance over the relevant bandwidth, incident angle range and
specified polarization. For afixed number of layers L, this taskmay be posed as

 l q l q= Î = =( ({{ ( ) ( )} } )) ( )O Lp p pargmin , , , , , , . 2P p i j s i j i
m

j
n

popt 1 1

Here, the design variable (or parameter) vector p is specified by some subset of h ={ }d ,k k k
L

1 (i.e. by some subset of
the thicknesses and complex refractive indices of the layers in the stack) and the subscripts of denote the
polarization of incident light. The cost functionOmeasures how closely a given configuration p approximates
the ideal response and perhaps penalizesmore complex designs. It is usually a numerical approximation for a

Figure 2.A schematic representation of a thin-film opticalfilter.
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definite integral over specifiedwavelength and incident angle ranges. The objective functionO should be
increasing in the number of layers L to reflect the fact that a simpler system is preferable.

IfO does not explicitly penalize amore complex system through dependence on L, one can do better and
achieve a lower global solution l q l q = =({{ ( ) ( )} } )O R Rp p, , , , ,p i j s i j i

m
j
n

opt opt 1 1 by increasing the number of
degrees of freedom through increasing L, and thereby the dimension of the search spaceP.When using the
algorithmoutlined in this paper to address this case, one should start with as few layers as is reasonable and
repeat the optimization process for incrementallymore layers until an acceptable performance is achieved or
until addingmore layers does not appreciably improve performance. Hence, we define the global solution to be
the solution corresponding to the number of layers immediately after diminishing returns set in.

Technically, this is aMixed IntegerNonlinear Program sinceO is nonlinear inp and the entries ofpmay be
continuouswithin an interval or be restricted to afinite number of choices, as in the case where some library of
materials is available in the laboratory. However, in this work attention is henceforth restricted to continuous
problems.

3.Deterministic global optimization algorithm

In this section, the branch-and-bound algorithm is presented. This framework for deterministic global
optimizationwas first proposed in 1960 by Land andDoig [9]. The algorithm systematically divides up the
search space, establishing rigorous lower bounds on each region, and converges when the best candidate
solution is sufficiently close to the global lower bound. First, we outline the branchingmethod for systematically
dividing up the parameter space, which employs best-bound subinterval and relative-width bisection direction
selection rules, and usesmidpoint evaluation for candidate-solution search. Secondly, we describe a procedure
for bounding functions of the front-interface reflection. The interval bounds are constructed using Taylor
arithmetic [14, 15].

3.1. Branch-and-boundmethod
Here, we assume that the search spaceP is a closed and bounded interval. Branch-and-bound begins with a
crude division of the search space. The objective lower bound on each subinterval/subspace is evaluated
following themethods described in the next section. These lower bounds are compared to the presently best
candidate solution, whichwe initially determine using a stochastic optimization algorithm, e.g. genetic
algorithms [3, 12] or variants of randommultistart [10]. If the lower bound of a particular subspace is larger than
the solution then that subspace can be eliminated. Remaining subspaces are divided, candidate solutions
computed on each subspace by evaluating themerit function at themidpoint of the interval, and the procedure
is repeated until the global solution is identified. Although procedures such as this one are generally considered
to be impractically expensive computationally, various stages of it admit readily to parallelization. Given today’s
availability and low-cost of cloud computing resources, we believe such algorithmswill become increasingly
important with time. Full details of the branch-and-bound implementation and its parallelization are presented
in [28]. Here, we focus on the choice of intervals for bisection.

The bisection of a simple nonconvex univariate objective is illustrated infigure 3.We considered three rules
for selecting subintervals for bisection. Thefirst involves picking the first subinterval corresponding to the least
remaining lower bound (LRLB). This rule is referred to as the best-bound rule in the deterministic global
optimization literature. The second involves picking the first subinterval corresponding to the least remaining
upper bound. This rule is referred to as the best-estimate rule in the literature. The third rule involves picking the
first subintervals corresponding to the least bisected subspace. This rule is referred to as the breadth-first rule in
the literature.

Figure 3.The bisection of a simple univariate (in p) objectiveO. The superscripts L andU signify the lower and upper bounds of
p andO.
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Todeterminewhich parameter of the chosen interval to bisect, we defined a quantity

( )
( )

( )w I

w P
3i

i

whichwe term the relative-width. Thewidthw is defined as the difference between the upper and lower bounds
of the corresponding interval Ii, and i is an index for the parameters in the search space. For example, given a thin
film coating of L layers, each described by a refractive index and thickness, Î ¼ -{ }i L L1, 2, , 2 1, 2 .
Normalization by thewidth of the original space,w(Pi), removes dimensional differences between different
parameters.

We found empirically that the best-bound rule coupledwith choosing i tomaximize the relative-width
worked best [28]. The best-bound rule ismotivated by the desire to increase LRLB value as fast as possible since
this is critical to convergence.Maximizing the relative-width divides the space in amore uniformway.

3.2. Lower bounding procedure
3.2.1. Taylor arithmetic
Once an interval in the design space has been identified, it is necessary to determine the bounds on the objective
functionwithin that interval. If the objective function is factorable, i.e. a function that can be computed in a
finite number of simple steps, the bounds can be determined using interval arithmetic [29–32]. This is a set of
rules corresponding to each step in the computation of the function. For example, consider the function a+b.
The corresponding interval arithmetic is:

+ = + +[ ] [ ] [ ] ( )a a b b a b a b, , , , 4L U L U L L U U

where the square brackets [ ], denote an interval bound for the enclosed quantity, and the superscripts L andU
signify its lower and upper bounds, respectively. The tightness of the resulting bounds, however,may suffer from
the dependency problem. Unless the objective function can be arranged such that each interval-valued variable
appears only once, interval arithmeticmay be unable to account for the dependency (or sensitivity) of each term
on the underlying independent variables. For example, consider the function - =a a 0. Naïve application of
interval arithmetic yields

- = + - - = - - ¹[ ] [ ] [ ] [ ] [ ] ( )a a a a a a a a a a a a, , , , , 0. 5L U L U L U U L L U U L

The dependency problem is a serious issue for thin-film optical filters. Consider the closed-form expression
for reflectance in the relatively simple case of a two layer device at normal incidence, wherewe assume that all
materials are nonabsorbing so that the refractive indices are real, andwhere nsub stands for the refractive index of
the substrate:



d d d d

d d d d

d d d d

d d d d

=

- - -

+ - + -

+ - +

+ + + +

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )

( )

( )
( )

n n

n n

n n

n n

p

1 cos cos sin sin

sin cos cos sin

1 cos cos sin sin

sin cos cos sin

. 6

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

sub 1 2 sub 1 2

2

1 1 2 2 1 2

2

sub 1 2 sub 1 2

2

1 1 2 2 1 2

2

2

1

1

2

sub

1

sub

2

2

1

1

2

sub

1

sub

2

Here,

d
p
l

= ( )n d2
7k

k k

is the phase change experienced by electromagnetic radiation in passing through layer k. Note themultiple
occurrences of the refractive index and thickness variables, which, to the best of our knowledge, cannot be
eliminated by simply rearranging the expression.

To alleviate the dependency problem, one can employ an approach referred to as Taylor arithmetic and
automated in the systemCOSY INFINITY [33] that is based on Fortran 77. Taylor arithmetic applies Taylor’s
theorem to bound an o+1 times continuously partially differentiable (on the interval under consideration)
function f of the interval-valued variable p by applying interval arithmetic to the following expression:

å= + - +
=

[ ]([ ]) ( )
!

( )([ ] ) [ ]([ ] ) ( )f f
i

D f rp p p p p p p
1

, , 8
i

o
i i

0
1

0 0 0

whereDif (p0) is the ith order partial derivative of f atp0. An explicit expression for the remainder is available for
such functions, it being themain tool for obtaining [r]; see [33] and the references therein. In otherwords, after
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expressing the function as the sumof its Taylor expansion of some specified order o around some reference point
p0 and a remainder term r, interval arithmetic is applied to that expression.

In an intuitive sense, the reason this works in reducing the dependency problem is that equation (8) attempts
to explicitly express the function in terms of its dependencies (the derivatives, atp0) onp. Derivatives are
computed using automatic differentiation [32]. In general, higher o yields tighter bounds at a higher
computational cost and is chosen empirically.We choose o arbitrarily in this work, as reported in section 5. The
reference pointp0may also be chosen arbitrarily. In this work, we choose themidpoint of the interval. Beyond
simple application of interval arithmetic to (8), more intelligent use of the Taylor expansion can lead to tighter
bounds. In this work, we employ the linear dominated bounder as such an intelligent alternative; see [33].

Wemust now checkwhether differentiability requirements are satisfied. These requirements are satisfied by
merit functionswhich are smooth functions of (of class ¥C ) for any o, since the composition of smooth
functions is a smooth function, and both the numerator and the denominator of are built up entirely from
smooth functions ofp (polynomial functions, the trigonometric functions and roots) and binary operations
which preserve smoothness. Since both terms are positive, the lower bound on the result of the division is
obtained as the division of the lower bound on the numerator and the upper bound of the denominator. The
upper bound on the result of the division is obtained as the division of the upper bound on the numerator and
the lower bound of the denominator. This can then be used as an interval to construct a bound on themerit
function.Wenote that this is not necessary for the examples we look at in this work, since both involve
minimizing reflection, so that only the lower bound of this interval is required. Finally, note that when
minimizing the square of reflectance, as onewould dowhen designing a beam splitter for instance, the
smoothness requirement is trivially satisfied by observing that the square is a smooth function.

4. Exploiting problem structure: domain reduction using gradient index constraint

In their naïve form, branch-and-bound algorithms scale poorly, and exponentially in theworst case. This
motivates the discovery of structural features thatmay be exploited to speed themup. In this section, we describe
one such feature relevant to broadband antireflection coatings, such as the ones thatwill be designed later.

Dating toRayleigh’s analogy to light propagating without reflection from space into successively denser
layers of the atmosphere, the gradient index formhas been previously conjectured to be the general solution
provided that the bandwidth is sufficiently wide [34, 35]. Indeed, later onwewill confirm that the global
solutions have the gradient index form: the refractive indices increasemonotonically and the thickness of each
layer decreasesmonotonically from air to substrate.

Here, we exploit this form tomake the algorithmmore efficient. For every variable other than those in the
first layer, we create a variable to lie on the interval [0, 1].We call these g" >i 1, i

ngi . Then,∀i>1, set
g=+n ni i

n
i1

gi . An analogous constraint can be implemented for the thickness variables. In doing this, the

domain is reduced to a fraction that is
å =

-( )
1

2 i
L i2

1
1 of the original space. Here, the factor of 2 in the exponent of the

denominator is due to the fact that such conditions hold for both the thickness and refractive index variables,
while the summation term in the exponent of the denominator is due to the fact that for every inequality in the
monotonicity constraint, the space is reduced to half of its original size. This fraction is equal to 1, 1

4
and 1

64
for

one, two and three layer problems respectively, promising significant reduction in convergence time.
The refractive index fraction is shown for the three layer case infigure 4. The inequalities in question here are

  ( )n n n . 91 2 3

Three planes can be seen in the figure, one for each inequality between the refractive index variables. Hence the
reduction is ´ ´ =1

2

1

2

1

2

1

8
due to the refractive indices and thereby 1

64
overall.

Such exponential domain reduction promises very efficient algorithms for gradient-index systems.
Consider, also, that there are other classes of optical systems such as gradient-index fibers and gradient-index
lenses where this constraint is imposed a priori for practicalmanufacturing reasons, so that this domain
reductionmechanismmay bemorewidely applicable than thin-film antireflection coatings.We also note that
the domain reduction can be used by any optimization algorithm, not just a branch-and-bound or even a
deterministic one. Finally, we emphasize that the discussion in this sectionwas purely theoretical, and that in the
next section no such special structure is imposedwhen optimizing.

5.Numerical examples

In this section, wefirst tackle the particular problemofminimizing average reflection from silicon over the
incident angle range [0°, 60°] and thewavelength range [400, 1600]nmwith thefirst example. Although silicon
absorption is weak above 1100 nm, reducing reflection at longer wavelengthsmay be important for
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upconversion and silicon photonic applications.We subsequently fine tune the design specifically for silicon
solar cells using practicalmaterials, a narrower wavelength range of [400, 1100]nmand the AM1.5G solar
spectrum in the second example. Untreated silicon normal incidence reflection is greater than 30%on average
over the incident wavelength ranges above,motivating this search for a ‘perfect’ antireflection coating for a
silicon solar cell—one that can transmit themost incident light tomaximize the efficiency of the solar cell in its
relevant wavelength and incident angle ranges of operation, with the ultimate goal of achieving greater
efficiency.

We note that although inhomogeneous opticalfilmswith continuously variable refractive indices can be
fabricated using co-sputtering techniques [36], combinations of discrete layers are typically the easiest to
manufacture. Using oblique-angle deposition of SiO2 and co-sputtering of SiO2 andTiO2, it is possible to vary
refractive indices continuously in the interval [1.09, 2.60] [36], striking very closely any index needed to
approximate a selected profile. This specifies part of our design space.

With regards to prior art, there is a good solution to this ‘perfect’ antireflection coating problem that
achieves an average reflection of 3.79%, a seven layer design that approximates the quintic profile

= + - - +( ) ( )( ) ( )n z n n n z z z10 15 6 . 10min max min
3 4 5

Existing solutions for reducing reflection losses also include surface texturing [16–20, 37], usedwidely in
commercial c-Si cells, in conjunctionwith a single-layer of SiNx:H.Unfortunately, surface texturing is generally
ineffective formulticrystalline silicon (mc-Si) cells, which currently command over 60%of the c-Si PV
market [27].

5.1. Broadband omnidirectional antireflection coating for silicon
The general antireflection design problem is summarized byminimizing the objective

ò òp
l q l=

p
( ) ( ) ( )O p p

3 1

1200
, , d , 11

0

3

400 nm

1600 nm

where the numerical approximation for the definite integral is performed using the rectanglemethodwith 10
rectangles for each independent variable and the top-left corner approximation, corresponding tom=10 and
n=10 in (2). This approximation is also known as the left Riemann sum.Weuse a 3rd order Taylor expansion
(order chosen arbitrarily) for constructing the lower bound on themerit function for this example, as well as for
the next example. Thicknesses and refractive indices of every layer are used as design variables thereby specifying
the design vector p. Thicknesses are assumed variable in [5, 500] nm,whichwe believe to be representative of
configurations reliably realizable on our sputtering system, althoughwe domake the thickness interval narrower
for the harder problems—as indicated in tables 1 and 2. Refractive indices are assumed to be variable in the
interval [1.09, 2.60]. For thismerit function, we compare ourmodel to data from the literature [36] and found
the discrepancy to be only 0.13% (3.66%versus 3.79%measured in thatwork). This suggests that ourmodeling
error is less than 0.2% and leads us to set the absolute convergence tolerance to 0.1%.Deterministic algorithm
solution information is shown in tables 1 and 2, and stochastic in table 3. Note that the stochastic tool finds the
solution—albeit without any guarantee. Also, observe that the three layer solution can be approximated fairly

Figure 4.Visualization of domain reductionmechanismof refractive index subset of the search space for the three layer case. For each
inequality constraint, there is a reduction of the original domain by a factor of two, so in this case there are three factors leading to a
reduction by a factor of eight.
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closely using the practicalmaterialsMgF2, Y2O3 and the rutile phase of TiO2.MgF2 could be substituted by other
fluorides such as LiF andNaF, Y2O3 by other oxides such asHfO2 andTiO2 by high indexmaterials such as ZnS.

5.2. Broadband omnidirectional antireflection coating specialized for silicon solar cells
Next, we further refine the design tominimize reflection specifically from silicon solar cells, using the solar
spectrum toweight the reflection cost function. The incident angle range consideredwas from0° to 60° away
from the normal as before, but thewavelength range is narrowed to [400, 1100] nmbecauseweighted silicon
absorption for higher wavelengths is negligible.We constrained the solution to a three-layer stack because
increasing the number of layers further yields diminishingmarginal gains in performance, as shown in [28], and
is likely uneconomic in high-volumemanufacturing.Moreover, the componentmaterials are initially assumed
to be isotropic, non-absorbing, and dispersionless, with refractive indices between n=1.09 and 2.60, consistent
with the nanoporousmaterials described in [36] and the references therein. Under these constraints, we
obtained the initial ‘ideal’ solution shown in table 4, corresponding to a global optimumwith an average
reflectance of (1.023±0.10)%.Wenote that the global optimum is a discrete gradient-index solution, i.e. the
indices aremonotonically increasing from air to silicon.While this property of the solution has already been
widely hypothesized in the literature for sufficiently wide bandwidth (see [34] and [35], previous section), this is
arguably themost rigorous evidence for this effect to date, since our conclusion is based on a guaranteed global
optimum.Wenote that for this particular problem, a representative stochastic global optimization procedure
(MLSL [10])was also able tofind the global optimum in amuch shorter time period-albeit without a guarantee
of global optimality, as reported in detail in [28]. Thus, it appears that in this case the value of our algorithm is
purely theoretical—in proving that some solution is truly a global optimum rather than discovering it. This is
not necessarily true in general for other problems in this class thatmay be feasibly optimized given the current
availability and cost of cloud computing resources, andwarrants further investigation.

The three-layer structure was subsequently re-optimized over thicknesses for practicalmaterials with
refractive index values closest to the initial solution:MgF2, Al2O3, and rutile TiO2, respectively, from air to

Table 1.Deterministic solution information for the second numerical example.Wall clock time is presented in the format seconds/hours/
days, with some information omittedwhen redundant. The thickness upper bound dU is given in the units of nanometers.

L dU Wall clock time Iterations Solution (merit, popt)

1 500 22.5 136 0.112, [1.93, 153]
2 500 118 513/32.9 202 134 0.0526, [1.55, 2.37, 109, 68.3]
2 250 44 093/12.2 110 744 0.0526, [1.55, 2.37, 109, 68.4]
3 200 1663 253/462/19.3 935 599 0.0182, [1.31, 1.85, 2.60, 131, 80.8, 61.9]

Table 2.Deterministic solution cost for the
second numerical example. CPU-days here
is defined aswall-clock time in days
multiplied by the number of processes. The
thickness upper bound dU is given in the
units of nanometers. The first Lnumbers in
the parameter vector are refractive indices,
and the subsequent Lnumbers are
thicknesses in nm.

L dU CPU-days EC2Cost

1 500 0.0042 $0.30

2 500 21.9 $6.90

2 250 8.16 $3.90

3 200 308 $159

Table 3. Stochastic algorithm solution information for the second design
problem.

L Convergence time (s) Solution (merit, popt)

1 66.6 0.112, [1.93 153]
2 295 0.0526, [1.55, 2.37, 109, 68.4]
3 918 0.0182, [1.31, 1.85, 2.60, 131,

81.0, 61.5]
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silicon.Wavelengthswereweighted using the AM1.5G photonflux spectrum, and incident angles were weighted
using the benchmark SOLISmodel [38, 39] between 0° and 60°. SOLIS accounts for the diurnal sinusoidal
variation in available solarflux, aswell as increased atmospheric attenuation at high zenith angles. To obtain
experimental refractive index spectra for thisfinal optimization, individualfilms of eachmaterial were prepared
on silicon substrates.MgF2was deposited by thermal evaporation, while Al2O3 andTiO2were deposited by RF
sputtering (see appendix B). Complex refractive indices of the fabricated filmswere characterized using a
spectroscopic ellipsometer, yielding average values for n of 2.43, 1.67, and 1.38 for TiO2, Al2O3, andMgF2,
respectively. The dispersion of eachmaterial for thewavelength range 400 nm�λ� 1100 nmwas included in
themodel. Re-optimization of the film thicknesses yielded the constrained practical solution shown in table 4,
with aweighted average reflectance of (2.53±0.10)%.

6. Experimental characterization

The full ARC stackwas fabricated on a siliconwafer, and the thickness of each layer wasmeasured using
ellipsometry and confirmed using stylus profilometry (figure B1). Note that althoughwe did not fabricate a
complete solar cell—just its front interface optical part—wedid theoretically evaluate improvements to the
complete solar cell power conversion efficiency via the procedure described in the next two paragraphs and
appendix C. Figure 5 shows a scanning electronmicrograph (SEM) cross-section of the complete coating and an
optical image taken under white light confirming that the coating looks dark to the naked eye. Themeasured
spectral reflectance for a range of incident angles is shown infigure 6 and at normal incidence infigure 7. Low
reflectance is observed across the broad range of angles andwavelengths relevant for solar energy harvesting.
This experimental result closelymatches both the predicted optimum for this set ofmaterials and themodeled
reflectance for thefinal structure.We note that the rapid rise at lowwavelengths contributes little to theweighted
average reflectance since the AM1.5G spectrumdecreases rapidly in that regime.

Table 4.Theoretical solution and experimental realization of guaranteed globally optimal antireflection
coatings for silicon. Average reflection for the ideal 3-layer solution, the constrained 3-layer solution
and the experimental 3-layer ARCwere computed to be 1.02 ± 0.10, 2.53 ± 0.10, and 2.76 ± 0.10%
respectively. Average reflectionwas computed over thewavelength range 400 nm�λ� 1100 nmand
for incident angles between 0° and 60°, except the experimental value, whichwas computed over the
samewavelength range and for incident angles between 20° and 60°, due to instrument constraints. For
the constrained solution and the experimental result, wavelengths wereweighted using theAM1.5G
photonflux spectrum, and incident angles wereweighted using the benchmark SOLISmodel [38, 39].
The particular formof the SOLISmodel usedwas equation (6) of [38], with both parameters in the
equation set at 0.9. Experimental error bars arewavelength-averaged values from repeated normal-
incidencemeasurements.

n1 d1 (nm) n2 d2 (nm) n3 d3 (nm)

Ideal 3-layer solution 1.15 139 1.66 87.3 2.60 56.2

Constrained 3-layer solution 1.38 83.5 1.67 39.8 2.43 51.6

Experimental 3-layer ARC 84.6 39.8 51.3

Figure 5. Inspection of the globally optimal coating. (a) SEMcross-section of optimized three-layer antireflection coating on silicon,
with average refractive indices shown in parentheses. (b)Picture of the optimized coating underwhite light. The coated silicon appears
dark to the naked eye from all angles.
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Figure 6.Performance of optimized three-layer antireflection coating.Measured reflectance of bare andAR-coated silicon as a
function of incident angle (0°–80°) away fromnormal for selectedwavelengths and three incident polarizations.Model predictions
are shown as solid lines. Low reflectance is observed across the broad range of angles andwavelengths relevant for solar energy
harvesting.

Figure 7.Antireflection performance comparison to high-efficiency c-Si solar cells with andwithout texturing. Normal-incidence
reflectance spectra are shown for our (untextured) three-layer ARC (red), a 24.4%-efficient sc-Si cell with pyramidal texturing (green),
and a 19.8%mc-Si cell with honeycomb texturing (blue). AM1.5G-weighted average normal-incidence reflectance values are also
shown. Both c-Si cells also employ two-layer (MgF2/ZnS) antireflection coatings, and reflectance data are adapted from [27]. The
theoretically predicted global optimum (dark red), experimental realization (red triangles), andmodel based onmeasured thicknesses
(black) are shown.
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Reflection losses constitute a non-negligible loss pathway inmodernmc-Si cells. Infigure 7, we compare the
normal-incidence reflectance of our optimized coating to that of high-efficiency (among themost efficient to
date) sc-Si andmc-Si solar cells from [40]. Both cells employ surface texturing and two-layer antireflection
coatings. Our three-layer stack (without any texturing) is observed to outperform these representative devices,
with a particularly large difference for themc-Si cell due to the difficulty of texturingmulticrystallinematerial.
However, we note that our use of a 525 μm thick siliconwafer hinders direct comparisonwith the 260 μm thick
back-contacted cells reported by [40]. A discrepancy attributable to parasitic absorption in the back contact and
increased optical path lengthmay arise near the band edge, where absorption drops off dramatically and the
absorption length starts to exceed the substrate thickness. For a 260 μm thick siliconwafer, nearly all light below
950 nm is absorbed in a single pass. Any underestimation of reflection should thus be limited towavelengths
above 950 nm (see appendix C).

Based on optical performance alone (corrected forwavelengths between 950 and 1200 nmby assuming
identical reflectance as the original cell from [40] in that range), application of our optimized three-layer ARC
would theoretically increase the AM1.5Gpower conversion efficiency of the texturedmc-Si cell by 0.51% in
absolute terms (see appendix C). In practice, the need for passivation of surface and bulk electronic defectsmay
motivate replacement of the bottomTiO2 layer with high-index SiNx:H. These estimates could be considered
conservative since they consider normal incidence only—the potential performance gainsmay be significantly
greater at higher angles of incidence [28].We note that commercial c-Si PVmodules employ AR-coated cells
encapsulatedwith EVA (n=1.5) and glass. To enable deployment in a standardmodule, a re-design or re-
optimization of theARC structuremay be required.

7. Conclusion

This paper introduced a deterministic global optimization algorithm for thin-film optical interference coatings,
providing an overview and an assessment of the current state of such techniques in this domain. An example
problempertaining to reducing broadband reflection from siliconwas studied and characterized
experimentally. The practicality of our approachwas assessed by comparing its computational cost relative to
traditional stochastic global optimization techniqueswhich provide no guarantees on their solutions.While our
method is observed to be significantlymore computationally expensive, we demonstrate that the current
accessibility of cloud computing enables us to verify solutions to simple yet important practical problems.
Ongoing advances in distributed computing are likely to bringmore design problemswithin the reach of
deterministic global optimizationmethods, yielding rigorous guaranteed solutions in the presence of practical
manufacturing constraints.Moreover, different design problems in this class, of similar complexity but a higher
degree of nonconvexity,may benefit from improved solution information as well, not just the guarantee of
global optimality.

This work lays themathematical and algorithmic foundation for the deterministic global optimization of
harder optical interference coating design problems,motivating and paving theway for future study ofmore
advanced parallelization techniques thatwill allow this algorithm to scale to thousands ofGPU-enabledCPU
nodes so as to enable significantly harder problems to be tackled in the near future. Ultimately we expect that
scaleable deterministic global algorithmswill transformoptical filter design, which is still sometimes regarded as
an art, into a science.
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AppendixA.Materials andmethods, numerical

In this appendix,weprovide some furtherdetails pertaining to thenumerical implementationof theparallel algorithm
thatwasdescribed in this paper.Wefirst providemoredetail on theparallelization andother related issues behind the
implementation.This is followedby thenumerical explorationof the variousproperties of the algorithm in the context
of a simple and relevant example—one and two layernormal incidencemultilayerARCdesignproblemwith carefully
selectedproblemsettings. For themost judicious reader, additional details canbe found in [28].

A.1. Parallel algorithm implementation issues
The parallel branch-and-bound algorithmwas implemented onAmazon’s EC2 platformusing theCOSY
INFINITY system [33]. In particular, single work queue dynamic scheduling components of the algorithmon
any given serverwere implemented using the scheduling construct PLOOPmade recently available byCOSY
INFINITY’s authors, this construct providing an interface to theMessage Passing Interface but restricted to all-
to-all communication between processes. It is emphasized that because this construct only allows all-to-all
communication between running processes, the communication and synchronization costs prohibit dynamic
scheduling of tasks acrossmultiple servers. Further details on this in [28].

Allmodels were tested against analytic examples in the literature while also being validated against real data.
Merit lower bounding codewas tested for consistency, i.e. we verified that the bounds become tighter as the
parameter interval onwhich the lower bound is computed ismade smaller, and that themerit value is attained
on a thin/degenerate interval. This allows us to conjecture that our algorithm is provably convergent [9].
Moreover, themodel was tested against real data in the context of the numerical example below, and found to be
accurate, which validates ourmodeling assumptions, choice of integral approximation, etc.

Computing costs are reported inCPU-days where appropriate, so as tomake it invariant to future
computing cost variation. Comparisonwith stochastic global optimizationmethods ismadewhere appropriate,
the goal of such a comparison being to gaugewhat advantage this algorithmhas over ‘state-of-the-art’ existing
methods.We choseMLSL as a representative stochastic procedure. Reasons for this choice are discussed further
in [28]. Termination criteria forMLSL is themaximumnumber ofmerit function evaluations and an absolute
convergence tolerance on themerit function value, whichever is reached first. Themidpoint of the search space
is used as an initial guess for the search. In each case, specific values for these termination criteria are given.
Optimal system configurations are reported as a vector of length 2L, with thefirst L entries representing
refractive indices and the rest representing corresponding thicknesses in nm.

When our optimization algorithmwas implemented onAmazon’s EC2 cloud computing platform,we used
a hybrid scheduling approach in the parallelization process: static scheduling at the server level and dynamic
scheduling via a single work queuewithin each server. In particular, convergence for the three-layer
omnidirectional problem (that was described in themain text and experimentally demonstrated)was achieved
in approximately 3weeks on a small-scale 16-processor implementation at a cost of approximately $160 and 309
CPU-days (CPU-days being defined as wall-clock time in daysmultiplied by the number of processes). See [28]
for detailed convergence results and further implementation details.

We next look in detail at a simple numerical example to verify algorithmbehavior.

A.2.Optimization of broadband normal incidence antireflection coating for silicon solar cells
Consider the problemof designing an antireflection coating for silicon solar cells, with the goal ofminimizing
average normal incidence reflectance over a broad range of wavelengths (λä[400, 1600] nm). This is captured
byminimizing the objective
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where thenumerical approximation for thedefinite integral is performedusing the rectanglemethod (using10
rectangles and the top-left corner approximation, corresponding tom=10andn=1 in (2)).Weuse a 3rdorder
Taylor expansion (chosen arbitrarily) for constructing the lowerboundon themerit function.Thicknesses and
refractive indices of every layer areused asdesignvariables (thereby specifying thedesignvector p). Thicknesses are
assumedvariable in [5, 500] nm.Refractive indices are assumed tobe variable in the interval [1.09, 2.60]. This is
consistentwith the recentdemonstrationof refractive indexvariability achievable throughoblique angledepositionof
SiO2 andco-sputteringof SiO2/TiO2 [36].Moredetails on themodel andparameter values in [28].

The point of the numerical exercise in this subsection is to demonstrate that our algorithm is correct for a
simple case.We start doing this by thoroughly visualizing its behavior in the context of the one layer (i.e. two
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parameter)problem.With only two parameters, it is possible to visualize themerit function and pick the global
optimumapproximately visually.We show this plot infigure A1. It is clear that this problem is highly
nonconvex, even in this small dimensional case, and that the issue can be reasonably expected to becomemuch
worse in larger dimensions.We see that the global solution is approximately popt=[1.95, 145], which
corresponds to amerit function value of 10.6%. This problem is simple enough for our branch-and-bound
algorithm to solve relatively quickly on a single process. Doing this yields the solution popt=[1.93, 148] and a
correspondingmerit function value of 10.6%, in 2424 iterations, 6.91 s CPU time and 7.07 s wall clock time. This
design can be realized approximately experimentally using amaterial such as yttriumoxide (Y2O3). The
convergence information (the incumbent and the LRLB evolution) is shown in figure A2. This exercise validates
our code.

Figure A1. Simple test function for the deterministic algorithm.One layer normal incidence problem visualized showing the
approximate global optimum.

Figure A2. Simple serial test example (L=1) convergence information.
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Next, we increase the complexity of the problem to two layers (i.e. 4 parameters) but increase the absolute
convergence tolerance to 2%. This yields a problem that is complex enough to analyze for scalingwith number
of processes, but simple enough for this to be done in reasonable time. Results of scaling tests are reported in
table A1. Efficiency of parallelization ismeasured as

= ( )E
T

NPT
. A.2

NP

1

Here,T1 is the serial execution time andTNP is the time for execution onNP processors. It is well-established that
ideal (linear) scalability would be represented by efficiency of 1∀NP, butmany practical algorithms show an
efficiency that declines with largerNP due tomore effort spent on synchronization and communication (with
efficiency reaching 0 for an infinite number of processors) [41]. Efficiency numbers greater than one indicate
superlinear speedup.More discussion of these effects in [28].

Appendix B.Materials andmethods, experimental

Multilayer antireflection coatings were fabricated on p-type [100] siliconwafers with a thickness of 525 μm.
TiO2 andAl2O3 filmswere deposited by RF sputtering from3 inch diameter targets at a rate of 0.2–0.4Å s−1, Ar
pressure of 3 mTorr, andRF power of 200W.MgF2was thermally evaporated from a tungsten boat at 1Å s−1 at
a base pressure of 10−6 Torr. No substrate heatingwas used. Refractive index and extinction coefficient spectra
were extracted by fitting data obtainedwith aWoollam variable-angle spectroscopic ellipsometer. Refractive
indices and extinction coefficients for thematerials used are shown infigure B1. Average refractive index profiles
for the ARC structure are shown infigure B2. Angle-dependent reflectance spectraweremeasuredwith the same
Wollam instrument and verifiedwith aCary 500i spectrophotometer equippedwith aVariable Angle Spectral
Reflectance Accessory. Normal-incidence reflectancemeasurements were performed using Filmetrics F20 and
F40 reflectometers. Corresponding normal-incidence spectra are shown infigure B3, and angle-dependent
spectra visualized infigures B4 andB5. SEM imagingwas performed using an FEIHeliosNanoLab 600i in
immersionmode at 5 kV. Sample cross-sections were prepared by focused ion beammilling at 30 kVon the
same instrument.

As discussed in themain text, our use of a 525 μmthick siliconwafermay hinder direct comparison of
antireflection performance to the 260 μmthick back-contacted cells reported in Zhao et al [40]. A thinner wafer
absorbs less light, while ametallic back contact increases parasitic absorption but also increases reflection at
longer wavelengthswhere silicon is weakly absorbing. These effects should affect our EQE estimates only for
wavelengths above 950 nm, at whichmore than 1%of light remains unabsorbed after propagating through
260 μmof silicon. To avoid overestimating ARCperformance, we calculate theoretical EQE spectra assuming
the same reflectance as the original cells for wavelengths between 950 and 1200 nm.

TableA1.Deterministic algorithm scaling test.

NP Wall clock (s) Efficiency Iterations Solution (optimalmerit, popt)

1 10 800 1 127 731 0.0465,[1.57, 2.42, 102, 63.0]
4 1410 1.92 31 930 0.0465,[1.57, 2.42, 102, 63.0]
8 608 2.22 15 960 0.0465,[1.57, 2.42, 102, 63.0]
12 384 2.35 10 634 0.0465,[1.57, 2.42, 102, 63.0]
16 302 2.24 7969 0.0465,[1.57, 2.42, 102, 63.0]
32 187 1.81 5717 0.0465,[1.57, 2.42, 102, 63.0]
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Figure B1. Index of refraction (n) and extinction coefficient (k) spectra ofmaterials used in antireflection coating. TiO2 andAl2O3 are
deposited by RF sputtering, whileMgF2 is deposited by thermal evaporation. The extinction coefficient of TiO2 andMgF2 from400 to
1100 nm is roughly zero.

Figure B2.Refractive index profile of antireflection coating for silicon. The global optimum three-layer solution is shown in black.
Re-optimization based on practical and durablematerials (TiO2, Al2O3, andMgF2) yields the device structure shown in blue, which
matches closely the experimentally realized profile shown in red.
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Figure B3.Normal-incidence reflectance for individual films andARC substacks on silicon.

Figure B4.High-resolution broadband omnidirectional reflection fromour 3-layer coating,measured using aCary 500i
spectrophotometer with a variable-angle specular reflectance accessory (average over s and p polarizations). The limits on the
wavelength and incident angle (shown in units of degrees) ranges are due to instrument constraints.
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AppendixC. Calculation of expected c-Si PVperformancewith optimizedARC

Theoretical solar cell performancewith the optimized coating (yielding reflectanceRARC) is calculated based on
external quantum efficiency (EQEc) and normal-incidence reflectance (Rc) data for efficient sc-Si andmc-Si cells
from literature [40]. Internal quantum efficiency (IQE) spectra are first calculated for each cell, assuming no light

is transmitted: l = l
l-

( ) ( )
( ( ))

IQE
R

EQE

1
c

c
. Assuming the cell IQE is unchangedwith different antireflection strategies,

the theoretical EQEwith the optimizedARC is given by l l l= -( ) ( )( ( ))REQE IQE 1ARC ARC . Integration of
EQEc andEQEARC against the AM1.5Gphoton flux spectrum yields the expected short-circuit current density of
the original cell and the cell with the optimized ARC, respectively. These values can then be used to calculate the
expected improvement in power conversion efficiency. All corresponding spectra are shown infigureC1.

Figure B5. Incident angle-dependent reflectance spectra of bare siliconwafer (left) and three-layer ARCon silicon (right). Incident
angles from20° to 80° away fromnormal are shown.Measured reflectance values (red) closelymatchmodeled spectra (black)
obtained by the transfer-matrixmethod.
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